Galilean$30711$ - vertaling naar italiaans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Galilean$30711$ - vertaling naar italiaans

TRANSFORM BETWEEN THE COORDINATES OF TWO REFERENCE FRAMES WHICH DIFFER ONLY BY CONSTANT RELATIVE MOTION WITHIN THE CONSTRUCTS OF NEWTONIAN PHYSICS
Galilean transformations; Galilean group; Galilean symmetry; Galilean Transformation; Galilei group; Galilean transform; Galilean geometry; Galilean boost

Galilean      
n. galileo
opera glasses         
  • Opera glasses with handle, ca.1910
SMALL, USUALLY COMPACT, BINOCULARS INTENDED FOR INDOOR USE
Opera glass; Theater binoculars; Galilean binoculars; Theatre binoculars
binocolo da teatro

Definitie

Galilean
·adj Of or relating to Galilee.
II. Galilean ·noun A Christian in general;
- used as a term of reproach by Mohammedans and Pagans.
III. Galilean ·noun A native or inhabitant of Galilee, the northern province of Palestine under the Romans.
IV. Galilean ·adj Of or pertaining to Galileo; as, the Galilean telescope. ·see Telescope.
V. Galilean ·noun One of the party among the Jews, who opposed the payment of tribute to the Romans;
- called also Gaulonite.

Wikipedia

Galilean transformation

In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout below). Without the translations in space and time the group is the homogeneous Galilean group. The Galilean group is the group of motions of Galilean relativity acting on the four dimensions of space and time, forming the Galilean geometry. This is the passive transformation point of view. In special relativity the homogenous and inhomogenous Galilean transformations are, respectively, replaced by the Lorentz transformations and Poincaré transformations; conversely, the group contraction in the classical limit c → ∞ of Poincaré transformations yields Galilean transformations.

The equations below are only physically valid in a Newtonian framework, and not applicable to coordinate systems moving relative to each other at speeds approaching the speed of light.

Galileo formulated these concepts in his description of uniform motion. The topic was motivated by his description of the motion of a ball rolling down a ramp, by which he measured the numerical value for the acceleration of gravity near the surface of the Earth.